VIDEO: Extreme Animal Attacks on Humans
The oceans accommodate many and various creatures that are no threat to man… as long as he stays out of the water.
When you cross them, entering their territory, they become just as dangerous and violent as bears or leopards.
This video shows violent animal attacks that take place near or in water.
The most dangerous, vicious and feared sea creatures remain sharks. Surviving a shark attack can be considered an actual miracle!
According to Wikipedia, the classic view describes a solitary hunter, ranging the oceans in search of food. However, this applies to only a few species. Most live far more social, sedentary, benthic lives, and appear likely to have their own distinct personalities.
Even solitary sharks meet for breeding or at rich hunting grounds, which may lead them to cover thousands of miles in a year. Shark migration patterns may be even more complex than in birds, with many sharks covering entire ocean basins.
Sharks can be highly social, remaining in large schools. Sometimes more than 100 scalloped hammerheads congregate around seamounts and islands, e.g., in the Gulf of California. Cross-species social hierarchies exist. For example, oceanic whitetip sharks dominate silky sharks of comparable size during feeding.
When approached too closely some sharks perform a threat display. This usually consists of exaggerated swimming movements, and can vary in intensity according to the threat level.
In general, sharks swim (“cruise”) at an average speed of 8 kilometres per hour (5.0 mph), but when feeding or attacking, the average shark can reach speeds upwards of 19 kilometres per hour (12 mph).
The shortfin mako shark, the fastest shark and one of the fastest fish, can burst at speeds up to 50 kilometres per hour (31 mph). The great white shark is also capable of speed bursts. These exceptions may be due to the warm-blooded, or homeothermic, nature of these sharks’ physiology. Sharks can travel 70 to 80 km in a day.
Sharks possess brain-to-body mass ratios that are similar to mammals and birds, and have exhibited apparent curiosity and behavior resembling play in the wild.
There is evidence that juvenile lemon sharks can use observational learning in their investigation of novel objects in their environment.
All sharks need to keep water flowing over their gills in order for them to breathe, however not all species need to be moving to do this. Those that are able to breathe while not swimming do so by using their spiracles to force water over their gills, thereby allowing them to extract oxygen from the water.
It has been recorded that their eyes remain open while in this state and actively follow the movements of divers swimming around them and as such they are not truly asleep.
Species that do need to swim continuously to breathe go through a process known as sleep swimming, in which the shark is essentially unconscious. It is known from experiments conducted on the spiny dogfish that its spinal cord, rather than its brain, coordinates swimming, so spiny dogfish can continue to swim while sleeping, and this also may be the case in larger shark species.