Toggle Menu
  1. Home/
  2. Uncategorized/

VIDEO: Acid Rain Eating Washington, D.C.

Acid rain damage can be seen on many of the monuments in Washington, D.C.

James Williams took a tour around the city.

Take a look in the video below.

According to Wikipedia, acid rain can have harmful effects on plants, aquatic animals and infrastructure. Acid rain is caused by emissions of sulfur dioxide and nitrogen oxide, which react with the water molecules in the atmosphere to produce acids.

Some governments have made efforts since the 1970s to reduce the release of sulfur dioxide and nitrogen oxide into the atmosphere with positive results. Nitrogen oxides can also be produced naturally by lightning strikes, and sulfur dioxide is produced by volcanic eruptions.

Acid rain has been shown to have adverse impacts on forests, freshwaters and soils, killing insect and aquatic life-forms, causing paint to peel, corrosion of steel structures such as bridges, and weathering of stone buildings and statues as well as having impacts on human health.

The corrosive effect of polluted, acidic city air on limestone and marble was noted in the 17th century by John Evelyn, who remarked upon the poor condition of the Arundel marbles.

Since the Industrial Revolution, emissions of sulfur dioxide and nitrogen oxides into the atmosphere have increased. In 1852, Robert Angus Smith was the first to show the relationship between acid rain and atmospheric pollution in Manchester, England.

Though acidic rain was discovered in 1853, it was not until the late 1960s that scientists began widely observing and studying the phenomenon. The term “acid rain” was coined in 1872 by Robert Angus Smith.

Canadian Harold Harvey was among the first to research a “dead” lake. Public awareness of acid rain in the U.S increased in the 1970s after The New York Times published reports from the Hubbard Brook Experimental Forest in New Hampshire of the myriad deleterious environmental effects shown to result from it.

Occasional pH readings in rain and fog water of well below 2.4 have been reported in industrialized areas. Industrial acid rain is a substantial problem in China and Russia and areas downwind from them. These areas all burn sulfur-containing coal to generate heat and electricity.

The problem of acid rain has not only increased with population and industrial growth, but has become more widespread. The use of tall smokestacks to reduce local pollution has contributed to the spread of acid rain by releasing gases into regional atmospheric circulation.

Often deposition occurs a considerable distance downwind of the emissions, with mountainous regions tending to receive the greatest deposition (simply because of their higher rainfall). An example of this effect is the low pH of rain which falls in Scandinavia.

The principal cause of acid rain is sulfur and nitrogen compounds from human sources, such as electricity generation, factories, and motor vehicles. Electrical power generation using coal is among the greatest contributors to gaseous pollutions that are responsible for acidic rain.

The gases can be carried hundreds of kilometers in the atmosphere before they are converted to acids and deposited. In the past, factories had short funnels to let out smoke but this caused many problems locally; thus, factories now have taller smoke funnels.

Joanna Grey